IOWA STATE UNIVERSITY

sdmay19-24: Power System Reliability in the Midwest U.S. for High Wind/Solar Levels

<u>Client</u>: Midcontinent Independent System Operator (MISO) <u>Advisor</u>: Dr. McCalley Website: http://sdmay19-24.sd.ece.iastate.edu/

Meet Our Senior Design Team

- Zaran Claes
- Shannon Foley
- Matthew Huebsch
- Shelby Pickering
- Ian Rostkowski
- David Ticknor

IOWA STATE UNIVERSITY

Why this research project?

- Renewable energy is variable, but the grid must remain reliable.
 - Renewable energy such as solar and wind are the fastest growing type of energy
 - Renewable energy is not perfectly predictable because it is based on weather
 - New forms of generation (renewable) are replacing the older (nonrenewable) sources that the grid was founded using
- Goal: Analyze and quantify the impact of increasing renewable levels on the Eastern Interconnection power grid for intended users of MISO and their stakeholders

IOWA STATE UNIVERSITY

Conceptual Sketch

Resource Adequacy

- Loss of Load Expectation (LOLE)
- Effective Load Carrying Capacity (ELCC)

MISO Region [1]

Siting ranks

IOWA STATE UNIVERSITY

Requirements

- Functional Requirements
 - PLEXOS Model grid simulation
 - o Generation Siting
 - o Automation
- Non-Functional Requirements
 - o Usability and Readability
 - o Data integrity
 - Use siting information to answer questions

IOWA STATE UNIVERSITY

Constraints and Considerations

- Access to Data
- Access to software (PLEXOS)
- Clientele contact
- NERC/MISO Standards familiarization
- Industry ready documentation

IOWA STATE UNIVERSITY

How is this project unique?

- Renewable Siting Criteria
 - Many unique siting considerations
 - o Deterministic Siting approach
- Renewable generation mixes
 - o Varying splits between Wind and Solar for different penetration levels

IOWA STATE UNIVERSITY

Risks and Cost

- No monetary costs
 - PLEXOS provided by Energy Exemplar
 - $\circ~$ Virtual Machine provided by Iowa State
 - o MISO/FERC/Utility goals documentation is public information

• Risks

- o Productivity
- o Data manipulation errors

IOWA STATE UNIVERSITY

Assumptions To Study

- Future may be 50% wind and 50% solar renewable energy
- Future may be 25% wind and 75% solar renewable energy
- Each future with 10, 30, 50, and 100 percent penetration of renewable energy on the grid
- Hydroelectric energy is always on (subtracted from overall load)
- Additional transmission for new generation is ignored
- Load and generation are always increasing

IOWA STATE UNIVERSITY

Project Milestones / Schedule

Education Period

- Capacity Credit and Capacity Factor Calculations
- Develop clearly supported siting criteria
- Learn PLEXOS
- Use PLEXOS, siting criteria, and capacity calculations to begin simulating models
- Write final report explaining findings of the study

IOWA STATE UNIVERSITY

Project Milestones / Schedule

IOWA STATE UNIVERSITY

sdmay19-24:

Project Overview

IOWA STATE UNIVERSITY

sdmay19-24:

System Design Overview

- Develop siting criteria and equation
- Calculate necessary capacity values and capacity factors
- Rank buses according to siting criteria and equation
- Assign generation to buses in descending order of desirability until penetration level is met
- Add new generation to base PLEXOS model and derive LOLE (loss of load expectation) and ELCC (Expected load carrying capacity)
- Retire unneeded coal and gas plants from the grid

IOWA STATE UNIVERSITY

Siting

- Represents how solar and wind may be added to the system
- Uses an equation to rank the data created by the team
- Locations with higher rankings will have solar or wind added to their locations first
- Equation takes 5 factors into account, capacity factor, Income of the area, population density, capacity value, and generation interconnection queue history
- Capacity Factor is generally the most important when siting
- Highly populated areas won't have large scale generation.
- Richer counties will contain rooftop solar

IOWA STATE UNIVERSITY

Creating a Model to Match the Future Load

- Tasked with designing possible future of MISO grid at varied levels of renewable energy penetration (10%, 30%, 50%, 100%)
 Only factoring in powering and color
- Only factoring in new wind and solar renewables
- While siting new generation, the peak load must be met
- Does not guarantee completeness, but is a good benchmark
- Best sites will be built on first

IOWA STATE UNIVERSITY

<u>Detailed Design and Testing</u>: Entering Data into PLEXOS and Re-working the Model

- Add model created to existing model provided by MISO into PLEXOS
- Used to calculate LOLE
- Want MISO zone to match 0.1 for value in PLEXOS, meaning one day in ten years.
- Re-work and adjust the model as needed until LOLE is met
 - Adjustments can involve adding more generation, or retiring old plants

IOWA STATE UNIVERSITY

sdmay19-24:

Testing and Evaluation Plan: Non-Functional Testing

- Calculate ELCC from simulation outputs. See that the ELCC matches the load of the system
- Plan to automate this process with code in Python
- Running sanity checks on system using Kaleidoscope

IOWA STATE UNIVERSITY

sdmay19-24:

Review of Process

To recap...

- Used load and generation data to develop Capacity Credit and Capacity factor values.
- Used these values, and other available information, to design criteria for siting renewable penetration.
- In phase 2, use PLEXOS to derive LOLE and ELCC and analyze the resulting grids.

Project Status

Phase 1

- Capacity calculations: complete
- Siting criteria: complete
- Ranking based on siting criteria: in progress

Phase 2

- Model generation in PLEXOS: to be completed
 - Generation model mixes
- Model Analysis: to be completed
 - LOLE and ELCC
- Final Report: to be completed

IOWA STATE UNIVERSITY

Task Responsibilities for Each Member

- Shannon Foley PLEXOS Admin and verification
- Matthew Huebsch Team Scribe
- Shelby Pickering Analysis Documentation
- Ian Rostkowski Scheduler and task management
- **David Ticknor** Team Contact
- Zaran Claes Enjoying his Co-op away from school!

IOWA STATE UNIVERSITY

Thank you!

IOWA STATE UNIVERSITY

Appendix

IOWA STATE UNIVERSITY

Definitions

- <u>Capacity Credit</u>: Ratio of average energy production during peak net load conditions over the installed capacity Reported as a percentage or a number between 0 and 1.
- <u>Capacity Factor</u>: Ratio of actual energy production in a year divided over the total energy production in a year Reported as a percentage or a number between 0 and 1.
- <u>Eastern Interconnect</u>: one of the 3 major grid interconnections in the United States. It borders the Western Interconnection on the border of Nebraska and Colorado and stretches North-South from Mexico to the Upper Canada. Figure 4 shows the land area for the EI [1].
- <u>Expected Load Carrying Capability (ELCC)</u>: The largest amount of load that the grid could produce if all generators were turned up to highest performance.
- Loss of Load Expectation (LOLE): A NERC requirement that states that any location cannot expect to have a loss of load (under-generation) that is greater than one event in 10 years.
- <u>*PLEXOS:*</u> Modeling software that is used by system operators to predict how the grid will be affected by proposed changes.

IOWA STATE UNIVERSITY

sdmay19-24:

NERC BAL-502-RFC-02

A. Introduction

- 1. Title: Planning Resource Adequacy Analysis, Assessment and Documentation
- 2. Number: BAL-502-RFC-02
- 3. Purpose:

To establish common criteria, based on "one day in ten year" loss of Load expectation principles, for the analysis, assessment and documentation of Resource Adequacy for Load in the Reliability*First* Corporation (RFC) region

- 4. Applicability
 - 4.1 Planning Coordinator
- 5. Effective Date:
 - 5.1 Upon RFC Board approval

B. Requirements

- R1 The Planning Coordinator shall perform and document a Resource Adequacy analysis annually. The Resource Adequacy analysis shall [Violation Risk Factor: Medium]:
 - R1.1 Calculate a planning reserve margin that will result in the sum of the probabilities for loss of Load for the integrated peak hour for all days of each planning year¹ analyzed (per R1.2) being equal to 0.1. (This is comparable to a "one day in 10 year" criterion).
 - R1.1.1 The utilization of Direct Control Load Management or curtailment of Interruptible Demand shall not contribute to the loss of Load probability.
 - **R1.1.2** The planning reserve margin developed from R1.1 shall be expressed as a percentage of the median² forecast peak Net Internal Demand (planning reserve margin).

IOWA STATE UNIVERSITY

Sources Cited

- 1. [1]"MISO announces \$2.7 billion expansion, includes \$170 million in Arkansas upgrades Talk Business & Politics", *Talk Business & Politics*, 2018. [Online]. Available: https://talkbusiness.net/2015/12/miso-announces-2-7-billion-expansion-includes-170-million-in-arkansas-upgrades/. [Accessed: 05- Dec- 2018].
- 2. "Eastern Interconnection," Wikipedia, 05-Jan-2018. [Online]. Available: <u>https://en.wikipedia.org/wiki/Eastern_Interconnection</u>. [Accessed: 03-Dec-2018].
- "Regional Transmission Organizations (RTO)/Independent System Operators (ISO)," FERC: About FERC What FERC Does, 18-Oct-2018. [Online]. Available: <u>https://www.ferc.gov/industries/electric/indus-act/rto.asp</u>. [Accessed: 03-Dec-2018].
- 3. J. Bakke, "Renewable Integration Impact Assessment," MISO Energy, tech., Apr. 2018.
- 4. C. D'Annunzio, "Capacity Value of Wind Power," *IEEE Transactions on Power Systems*, vol. 26, no. 2, May 2011.
- 5. "Maintaining Reliability in the Modern Power System," *Reliability Report US Department of Energy*, Dec. 2016.
- 6. "Planning Year 2017-2018 Wind Capacity Credit," *MISO Capacity Report*, Dec. 2017.
- 7. *IEEE Recommended Practice for the Electrical Design and Operation of Windfarm Generating Stations, IEEE 1094-1991, 1991*
- 8. IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems, IEEE 493-1997, 1997.
- *9. IEEE Recommended Practice for Electric Power Distribution for Industrial Plants,* IEEE 141-1993, 1993.
- 10. NERC, "Standard BAL-502-RF-03." [Online]. Available: <u>https://www.nerc.com/pa/Stand/Reliability</u> Standards/BAL-502-RF-03.pdf. [Accessed: Dec-2018].
- 11. <u>Standard Definitions for Use in Reporting Electric Generating Unit Reliability, Availability, and Productivity</u>, IEEE 762–2006, 2006

IOWA STATE UNIVERSITY

Testing and Evaluation Plan: Functional Testing

- Run simulation of model in PLEXOS
- Ensure that the model created is valid, and that PLEXOS doesn't give any errors found within the model
- Obtain LOLE for MISO zone from PLEXOS under list of properties found during simulation
- Run tests for each level of penetration, and each re-work of the model

	4 # 0 0 ≠					
PL	EXOS Home	Window	Visualizer	Chart	Qu	ery History
New	Open Connect Sa	ave	Excel	Auto •	C	blumn Size
	File	Clipl	board	Numeric F	orm	at Solu
D T	To ISU Seams Model	🖸 Base ST	1 year TEST F	PASA DO NOT	ENF	FORE LINE LIMITS
Day						> 🗸 in System
Mont	th					M Glastria
Fiscal	Year					 Electric
Dat	Date Range					Generators
1/1/20	1/2024 1: 12:00 AM					 Transmission
1,1,1	1 Deried(s)	- Colored	Trend			Regions
	r Period(s)	Extend	Irend			> 🗸 🚞 Zones
Prim	ary Axis Seconda	ary Axis				
▲ Pr	roperties			(1/19)		
	Property		Unit	Bands		
▲ Z	Zone					
Peak I	Load		MW	1		
Gener	ration Capacity		MW	1		
Firm (Firm Generation Capacity Curtailable Load Contract Generation Capacity Contract Load Obligation Import Capacity Export Capacity Net Capacity Interchange Min Capacity Reserves		MW	1	≣	
Curta			MW	1		
Contr			MW	1		
Contr			MW	1		
Impor			MW	1		
Net C			NAM	1		
Min C			MW	1		
Capad	city Reserves		MW	1		
Min L	Load		MW	1		
Discre	ete Maintenance		MW	1		
Distri	ibuted Maintenance		MW	1		
Maint	tenance Factor		-	1		
EENS			MWh			
EDNS	<u>.</u>		MW	1)
LOLE			day	1		
LOLP			%			
▼ Se	econdary Y-Axis Prop	erties		(0/0)		
					•	▲ Q

IOWA STATE UNIVERSITY

Limitations

- Time
- Given data is restricted to 2007 through 2012
- Simplified 80 bus system
- Where generation can be sited
- How much generation can be added
- Which generators are retired and the order in which they are retired

IOWA STATE UNIVERSITY